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Abstract. We report on the first observation of the outer well of the (6)1Σ+
g state of Na2 molecule. The

levels are populated in a molecular beam experiment with a three step laser excitation. The fact that these
levels predissociate allows an almost background free detection by the appearance of atomic fluorescence.
With this method almost all vibrational levels of the outer well are observed. The corresponding predis-
sociation line widths show an oscillating behaviour. The theoretical description of the predissociation is
presented in the framework of mapped Fourier grid Hamiltonian representation with optical potential,
involving two coupled electronic states. Combining the spectroscopic information on energy positions and
predissociation widths, a Rydberg-Klein-Rees potential curve is given for the outer well. Such a state could
offer a reliable path for photoassociation of cold Na atoms and formation of ultracold Na2 molecules.

PACS. 33.80.Gj Diffuse spectra; predissociation, photodissociation – 31.50.Gh Surface crossings,
non-adiabatic couplings – 42.62.Fi Laser spectroscopy

1 Introduction

Excited potential curves of diatomic alkali molecules may
show a double well structure, which have been observed
experimentally in a few cases [1–4]. Potentials with such
a special shape play an important role for the produc-
tion of cold ground state molecules and their study is of
particular interest. Indeed, laser cooling techniques, which
are successfully used for atoms, can generally not be ex-
tended to molecules due to their dense level structure
of each electronic state. One solution consists in forming
cold molecules by photoassociation of two previously cold
atoms into an excited electronic state followed by sponta-
neous emission to the molecular ground state. To increase
the efficiency of the spontaneous emission step, the popu-
lation of bound states of an outer well of excited molecular
potentials is very favourable because the Franck-Condon
overlap with ground state levels is enhanced by the am-
plitude of the vibrational wave function in the double well
at intermediate internuclear separation [5].

Photoassociation experiments using cold Na atoms
have been achieved some years ago [6], but the obser-
vation of ultracold Na2 molecules [7] is not favoured by
the existing long-range potential wells correlated to the
3s + 3p limits, in contrast with Rb2 [8] and Cs2 [5]. The
search for more favourable scheme is therefore a challenge.
For instance, ab initio calculations by Magnier et al. [9]
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predict the existence of a secondary well for the (6)1Σ+
g

state of Na2 molecule around 35a0 (a0 = 0.0529177 nm)
which results from a configuration change of the electronic
wavefunction from ionic to covalent character.

Such an electronic state could be used to create cold
Na2 molecules, and it is the purpose of the present paper
to provide the accurate spectroscopy of this state.

The inner well of the (6)1Σ+
g state in Na2, which corre-

lates to the 3s+ 5s asymptote, was studied with optical-
optical double resonance spectroscopy [10]. The highest
observed level lies near the energy of the local minimum
of the outer well, according to the ab initio calculations of
reference [9], but is well separated from the outer well by
a fairly high barrier. Starting from the same calculations,
a detailed theoretical investigation of the outer well was
performed by Almazor et al. [11]. In addition to the cal-
culation of eigenenergies of the outer well of the (6)1Σ+

g

state, the possibility to populate this well starting from
ground state molecules was discussed.

In this paper we report on the observation of the sec-
ond well of the (6)1Σ+

g state in a molecular beam ex-
periment using a three step laser excitation. After a de-
scription of the experimental setup (Sect. 2), we present
the experimental results (Sect. 3), and explain the extrac-
tion of a potential curve for the outer well (Sect. 4). A
model of two coupled electronic states, the (6)1Σ+

g with
the (5)1Σ+

g , (Sect. 5) is used to describe the observed
predissociation of the levels of the outer well into the
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Fig. 1. Experimental excitation scheme to access levels of the outer well of the (6)1Σ+
g (3s + 5s) state of Na2.

3s+ 4p dissociation continuum, and is compared with the
experiment.

2 Experimental setup

The levels of the second well of the (6)1Σ+
g state are ob-

served using a multistep laser excitation scheme, starting
with molecules in a well-collimated beam where mainly
the few lowest vibrational ground state levels (vX = 0, 1,
and 2) are populated. A sketch of the excitation scheme
is given in Figure 1. A first laser L1 around 620 nm is
kept on an appropriately chosen rovibrational transition
between the A1Σ+

u state and the X1Σ+
g ground state (e.g.

X(vX = 0, J) → A(vA = 13, J + 1)) to populate higher
vibrational levels (e.g. vX = 27) by Franck-Condon pump-
ing in a first interaction zone. For long-term stability this
laser is locked on the maximum of the fluorescence which
is monitored by a photomultiplier.

Starting from these levels it is possible to populate
with a two-photon process levels of the outer well of the
(6)1Σ+

g state using two additional lasers. The second laser
L2 around 530 nm is resonant with a transition from a
Franck-Condon pumped level to a high lying vibrational
level of the A state [12]. For this study the vibrational
levels vA = 88 to 122 were used as intermediate levels.
The long-term stability of laser L2 is ensured by a sta-
bilization on a external Fabry-Perot interferometer with
a free spectral range of 150 MHz, which has a fixed fre-
quency comb due to stabilization to an iodine-stabilized
He-Ne laser. For interpolation between the fringes of this
coupling cavity the frequency of the He-Ne lasers can be
shifted with an AOM.

The third laser L3 is used to excite levels of the outer
well at their inner turning point, as it is indicated in Fig-

ure 1. Wavelengths between 625 nm to 735 nm are neces-
sary for this step. While laser L3 is tuned, the molecular
fluorescence out of the intermediate A state level back to
the ground state and the atomic fluorescence of the tran-
sition 4p→ 3s at 330 nm is observed. If laser L3 hits the
two-photon resonance, due to the predissociation of the
upper level into the continuum above the 3s+ 4p asymp-
tote, a signal by atomic fluorescence at 330 nm is observed.
This detection scheme is almost background-free because
the frequency of this atomic fluorescence is far away from
all laser frequencies involved or from molecular fluores-
cence. It was not possible to observe any two photon signal
on the molecular detection channel under our experimen-
tal conditions. Populating levels of the (6)1Σ+

g state did
not lead to a significant reduction of the molecular fluo-
rescence from the intermediate level, in contrast to a pre-
vious experiment accessing the ground state asymptotes
of Na2 [13].

The experimental setup is similar to the one given
in [13]. The three laser beams intersect the collimated
molecular beam in two interaction zones perpendicu-
larly. The first zone for the Franck-Condon pumping with
laser L1 is separated from the second one, where laser L2
and L3 are spatially overlapped, to avoid multi-photon
processes including all three lasers. All lasers are tunable
single-mode dye lasers which are operated with sulforho-
damin (L1), coumarin 6 (L2) and DCM or pyridin 2 (L3).
For the simultaneous observation of the molecular and
atomic fluorescence in the second interaction zone, the
total fluorescence is collected by a lens system, splitted by
a dichroitic beam splitter into a visible and an ultra-violet
part, and focussed onto two different photomultipliers.

The energies of the observed levels will be referred to
the lowest hyperfine asymptote 3s(f = 1) + 3s(f = 1) of
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the molecular ground state. Therefore several frequency
calibration steps are necessary. The energetic distance be-
tween vX = 0, JX = 0 and vX = 27, JX = 0 was de-
rived from measurements by Wang [14] with an uncer-
tainty of ≈ 30 MHz. Starting from this level we measured
with laser L2 several transitions of the A−X system with
iodine saturation spectroscopy to determine energy dif-
ferences of rotational or vibrational levels of the ground
state. With this method it is possible to calibrate within
several steps the Franck-Condon pumped levels of the
X1Σ+

g state which were used for this experiment. The
frequencies of the hyperfine resolved iodine lines are cal-
culated with the program Iodinespec, which gives a 2σ
prediction uncertainty of 3 MHz [15]. Together with the
comb of a 150 MHz Fabry-Perot cavity, whose free spectral
range is known with an uncertainty of less than 10 kHz,
we reach an overall uncertainty of 10 MHz for the tran-
sition frequencies of the A − X system. With the same
setup the frequencies of laser L2 are calibrated, which are
used to populate the desired intermediate level in the A
state prior to the excitation of levels of the outer well
of the (6)1Σ+

g state. For the determination of the fre-
quency of the laser L3, we use iodine absorption spec-
troscopy and the 150 MHz cavity for interpolation. Again
the iodine lines were calculated with the program Iodine-
spec, but this time with unresolved hyperfine structure,
i.e. with an absolute accuracy of about 60 MHz. This cal-
ibration procedure leads to term energies of the levels of
the (6)1Σ+

g state with respect to the level vX = 0, JX = 0
of the X1Σ+

g ground state. To refer these energies to
the 3s(f = 1) + 3s(f = 1) asymptote one has to sub-
tract the energetic difference 5942.6148(39) cm−1 between
vX = 0, JX = 0 and 3s(f = 1)+3s(f = 1) [13]. This gives
a minimum 1σ uncertainty of the level energies referred to
3s(f = 1)+3s(f = 1) of 0.005 cm−1. In cases of low signal-
to-noise ratio or levels broader than 2.8 GHz of (6)1Σ+

g

this will increase, but will never be larger than 0.008 cm−1.

3 Measurements

With the above setup we measured 105 vibrational levels
of the outer well of the (6)1Σ+

g state up to the internal
barrier and a few levels covering both wells of the double
minimum potential. For all levels, the observation relies on
the predissociation observed through atomic fluorescence.
In the following quantum numbers with index 6 belong to
levels of the outer well of the (6)1Σ+

g state. The data set
mainly contains levels with rotational quantum numbers
J6 = 9 and J6 = 11, corresponding to JA = 10 for the
intermediate level in the A1Σ+

u state. For a few vibrational
levels JA = 19 was used as intermediate one as well and
for one vibrational level the whole rotational ladder from
J6 = 0 to J6 = 20 was measured1.

1 All our data are available on request. These data contain
the assignment (for the vibrational quantum number see dis-
cussion below), the energetic positions of the levels referred to
the 3s(f = 1) + 3s(f = 1) asymptote (see Sect. 2), and the
linewidth of the level.
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Fig. 2. Rotational constants derived from the doublet J6 = 9
and J6 = 11 for the vibrational levels lying entirely within
the (6)1Σ+

g outer well (solid squares), or above the potential
barrier between the two wells (open squares). A solid line con-
nects all points, to make clear the variation. The assignment
of the vibrational quantum number will be discussed in Sec-
tion 4. Levels marked by arrows are tunneling levels (see text
for explanation).

Figure 2 shows rotational constants of the levels of
the (6)1Σ+

g outer well derived from the splitting of the
rotational doublet J6 = 9 and J6 = 11 as a function
of the vibrational quantum number v6 (the vibrational
assignment is discussed in Sect. 4). The rotational con-
stant increases gradually from 0.006 cm−1 for low v6 to
0.008 cm−1 for v6 around 100. This variation differs from
the decreasing behaviour of a normal molecular oscillator
and reflects the unusual shape of this well. Close to the
top of the barrier between both potential wells the rota-
tional constant increases rapidly to a value of 0.026 cm−1,
due to the opening of the outer well to smaller internu-
clear distances. This behaviour which is made clear by a
connecting line in Figure 2 has two exceptions, marked
by arrows and discussed below. Around v6 = 40, 10 vibra-
tional levels were not observed due to the lack of appropri-
ate laser sources. Unfortunately, it was not possible with
our equipment to connect the wavelength range of the dye
pyridin 2 to that of DCM without any gap. The connect-
ing line in Figure 2 indicates the expected behaviour of
the rotational constant in this energetic region. Because
of the known vibrational spacing below and above this gap
there is no doubt concerning the number of missing levels
and therefore the relative assignment of the vibrational
levels is fixed.

Figure 2 also contains a few rotational constants which
belong to levels extending over the whole double well po-
tential (open squares). The given vibrational assignment
of the levels above the barrier is just a continuation of the
vibrational quantum numbers of the outer well because
the inner well is not known up to the barrier. Evidence
for the observation of levels above the barrier is provided
by the abrupt change of the rotational constant which
is proportional to the inverse of the moment of inertia.
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Therefore, levels above the barrier have larger values for
the rotational constant than for the levels of the outer well
because the wavefunctions of the outer well are located at
larger internuclear separations. The excitation scheme ap-
plied needs a good amplitude of the vibrational wavefunc-
tion at intermediate internuclear separations, e.g. 18a0 in
Figure 1. Thus levels far above the barrier will be hardly
excited in the present setup. This limited the number of
observed levels above the barrier to five.

Just below the barrier for v6 = 114 two levels
for each J6 = 9 (level energies 31942.268(9) cm−1

and 31944.304(6) cm−1) and J6 = 11 (level ener-
gies 31943.149(9) cm−1 and 31945.889(6) cm−1) were
observed, which give exceptional rotational constants
(marked in Fig. 2 with arrows). Their spacing of only
≈ 2 cm−1 is substantially smaller than the local vibra-
tional frequency of approximately 11 cm−1 (the vibra-
tional spacing decreases to about 8 cm−1 just below the
top of the barrier). This behaviour can be explained by
tunneling through the potential barrier between the inner
and the outer well. If two levels of each well are almost de-
generate, the probability for tunneling through a not too
wide barrier is very high and both levels repel each other.
Due to the tunneling the wavefunction is located in both
potential wells which leads to larger rotational constants
of these levels compared to levels of the outer well. From
the magnitude of the rotational constant, one can distin-
guish whether the wavefunction of these two levels has a
larger amplitude in the inner or outer well, respectively.
Similar tunneling was observed in Cs2 in a photoassocia-
tion experiment [16].

If one performs the same experiment using an interme-
diate level with a different angular momentum, the reso-
nance condition for tunneling will be different. We ob-
served rovibrational levels close to the barrier for v6 = 114
and J6 = 18 and J6 = 20 as well. In this case the rota-
tional constant is quite normal again. The tunneling rate
is strongly J dependent and is too small for J6 = 18 and
J6 = 20. For v6 = 115, however, for J6 = 18 and 20 again
an unexpected large rotational constant was found, but
with the current signal-to-noise ratio no additional lines
of a tunneling doublet could be detected. From these lev-
els information about the inner potential well could prin-
cipally be derived, but there remains a large gap to the
uppermost observed level in the inner well. So a detailed
characterisation of the inner well is not an easy task and
will not be pursued in this paper.

The observation of the outer well should be compared
with ab initio calculations. A comparison of the observed
rotational constants (see Fig. 2) and vibrational spacings
with the calculated ones reported by Almazor et al. [11],
which are based on ab initio potentials [9], leads to an
agreement for the rotational constants within the experi-
mental uncertainty while the calculated vibrational spac-
ings are slightly too large. For vibrational spacings ly-
ing within the 12 cm−1 to 14 cm−1 range, the deviation
between experiment and ab initio calculation is always
−0.1 cm−1 whereas for levels close to the potential mini-
mum and to the top of the barrier this deviation increases

Fig. 3. Observed line widths of the vibrational levels (with
J6 = 9) lying within the (6)1Σ+

g outer well (solid squares),
or above the potential barrier (open squares). The origin of
energy is taken at the 3s(f = 1) + 3s(f = 1) asymptote. A
solid line connects all points, to make clear the variation.

up to −0.4 cm−1. Nevertheless the agreement between ob-
servation and calculation is good for finding easily the
neighbouring vibrational levels once a vibrational level of
the outer well of the (6)1Σ+

g state has been observed.
Up to now only the energetic positions of the levels of

the outer well were discussed, but as already mentioned
the detection scheme relies on the predissociation of these
levels. Therefore, the line widths of the levels of the outer
well is of special interest because they directly indicate the
predissociation rate. Almazor et al. [11] estimated predis-
sociation lifetimes with a Landau-Zener model and pre-
dicted a continuous decrease with increasing energy.

As shown in Figure 3 the observed line widths depend
on the energy and oscillate faster and faster as the energy
approaches the internal barrier. The narrowest line has a
width of 30 MHz, the broadest 4.4 GHz. With each oscil-
lation the maximum line width increases, and so does the
line width at the minima of the oscillations.

The energy reference in Figure 3 is again the 3s(f =
1) + 3s(f = 1) asymptote. The last data points indicate
that the line width oscillation probably continues above
the barrier. The gap between 30930 cm−1 and 31070 cm−1

corresponds to the same region as in Figure 2 and the
line suggests the expected behaviour of the line widths.
The insert shows with enlarged scale the line widths for
the lowest 35 observed vibrational levels. Here another
maximum for the line widths becomes visible.

These widths are directly taken from the experimental
observation which means that, in addition to the predisso-
ciation broadening, they contain other contributions like
natural radiation width, laser line width (≈ 1 MHz), time
of flight broadening and residual Doppler width. Under
our experimental conditions (focus diameter ≈ 200 µm),
the time of flight broadening is in the order of a few MHz,
but the largest contribution to the experimental broaden-
ing is the residual Doppler width of the two-photon tran-
sition with ≈15 MHz. In addition, the levels of the outer
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Fig. 4. Rotational dependence of the observed line widths of
the vibrational level v6 = 77 for J6 = 0 to J6 = 20.

well can decay radiatively. The calculated rate [11] is in
the order of a few 10−6 s and therefore this contribution
to the width is smaller than 1 MHz.

If the signal-to-noise ratio is sufficient, the linewidth
given is simply the full line width half maximum of the
observed symmetric profile, otherwise the line profile is
fitted. For broad lines close to the internal barrier we as-
sumed a Lorentzian profile and for narrow lines close to
the potential minimum the profile is better described by
a convolution of a Gaussian and Lorentzian profile.

The observed line width oscillation for J6 = 11 is al-
most exactly the same as the depicted one in Figure 3
for J6 = 9. The influence of rotation on the line width is
small compared to its vibrational dependence since the en-
ergy variation is smaller. For one vibrational level, which
is close to the minimum of the line width at 31500 cm−1

(v6 = 77), we studied the line width depending on the an-
gular momentum J6 in more detail (see Fig. 4). Starting
with J6 = 0 the line width drops down from 210 MHz
to 55 MHz for J6 = 13, followed by an increase up to
again 210 MHz for J6 = 20. Scaling the abscissa by en-
ergy the graph corresponding to Figure 4 has symmetrical
appearance.

4 Potential determination

In the previous section an assignment of the observed vi-
brational levels was already assumed. But in contrast to
the rotational quantum number, which is determined by
the chosen intermediate level, a purely experimental as-
signment of the vibrational quantum number is not obvi-
ous. The assumption that the lowest observed level is the
vibrational level v6 = 0 will be incorrect in most cases,
especially because the detection of the levels relies on the
predissociation rate which is decreasing while approaching
the potential minimum of the outer well. Additionally, the
laser power was limited in our setup to only a few mW in
the frequency range which is needed to excite the low ly-

ing vibrational levels. This might be not sufficient for the
two-step excitation.

To get more information on the vibrational assignment
we measured the line intensities of transitions to a single
low-lying vibrational level of the outer well from different
vibrational levels of the A1Σ+

u state as intermediate level.
The line intensities are normalized to the laser intensity to
compare them with Franck-Condon factors for transitions
between the A state and the outer well of the (6)1Σ+

g

state. For the calculation of the Franck-Condon factors
we used a Rydberg-Klein-Rees (RKR) potential for the A
state which was derived from known data from the litera-
ture and own measurements. For the outer well of (6)1Σ+

g ,
RKR potentials for different vibrational assignments were
constructed via Dunham parameters, approximating the
outer well as a normal potential with repulsive branch,
neglecting the effects of the barrier and the inner well.
The assignment giving the best agreement between calcu-
lated Franck-Condon factors and measured intensities was
used, but an uncertainty of ± 1 unit remains. The lowest
observed level then gets the quantum number v6(min) = 4
for the outer well.

The best RKR potential is then represented analyti-
cally by a power series [17]:

V (R) = Tm + a1ξ + a2ξ
2 + a3ξ

3 + ..., (1)

with
ξ = ξ(R, b) =

R−Rm

R+ bRm
, (2)

where Rm is the equilibrium distance of the initial RKR
potential and the parameters b, Tm, a1, . . . are determined
from a least squares fit to the RKR potential. The param-
eter b in equation (2) is used to handle the very different
steepness of the potential left and right to Rm and is cho-
sen such that the number of ai coefficients required to
represent the RKR potential is minimal. This representa-
tion is extended with an exponential repulsive branch for
R < 16.1a0 and by a dispersion term from R > 42.5a0

to larger internuclear distances. It was checked that the
eigenenergies of the considered levels determined numeri-
cally in this potential were affected by not more than their
experimental uncertainty by these extensions and by ne-
glect of the barrier and the inner well. We note that the
highest observed levels, i.e. levels between v6 = 100 and
v6 = 118, were excluded, because the model for the poten-
tial is designed for a single well only and cannot handle
the bend close to the barrier.

The parameters Tm and ai are then refined by min-
imizing the differences between the experimental energy
levels and those calculated numerically using a Numerov
method, where we chose a 0.0074a0 grid spacing in order
to get sufficiently fine spatial resolution of the vibrational
wavefunctions also for high v6.

With the vibrational assignment derived above a fit of
the analytical potential including all observed vibrational
levels up to v6 = 100 gives a normalized standard devia-
tion σ = 4.2. The differences (obs-cal) between observed
and calculated values for this potential oscillate around
zero depending on the vibrational quantum number just
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Fig. 5. Vibrational dependence of (obs-cal) of energies for a
single channel potential fit with vibrational quantum num-
ber reduced by one with respect to determination from
Franck-Condon factors (see text). The energy deviations (black
squares, left scale) oscillate like the linewidth (grey squares,
right scale). A coupled channel calculation with two states gives
an increasing systematic deviation due to the interaction (open
circles). This can be iteratively reduced (see Sect. 5.5), but the
oscillation in (obs-cal) cannot be removed (open squares).

like the predissociation line widths do. Additionally, levels
close to the gap between v6 = 38 and v6 = 48 and close
to the potential minimum show quite large deviations in
(obs-cal).

The fit quality improves rather abruptly if the assign-
ment is changed to v6(min) = 3 instead of v6(min) = 4
for the lowest observed level. The standard deviation de-
creases to σ = 2.1. Nevertheless the oscillation in (obs-cal)
remains, but with a smaller amplitude, and the levels close
to the boarder of the measurements are better described
as well (full squares in Fig. 5).

Further shift of the vibrational assignment towards
lower values improves the fit quality just a little bit, but
if one assumes that the lowest observed level is v6 = 0 the
standard deviation increases again. Therefore the present
approach of an analytic potential apparently cannot give
a unique assignment but it seems probable that the vibra-
tional assignment has to be shifted compared to the result
obtained via Franck-Condon factors by at least one and
at most by three units to lower values. An assignment
adding one or two units leads to a significant deviation
between observation and calculation. The assignment of
v6(min) = 3 is used for the Fourier grid calculations de-
scribed in Section 5.

In Figure 6, the analytic potential, and the external
well of the adiabatic potential calculated in reference [9]
are compared. Both potentials are referred to the energy
origin at 3s + 3s. The two potentials are quite well su-
perimposed, while they differ at most by 15 cm−1 at the
bottom of the well.

Due to the observed predissociation it is clear that a
coupling to at least one other electronic state exists but
the potential one derives by the procedure above does not
include the coupling. Nevertheless this potential can be
used as a first approximation for more refined calculations
which will be described in the following section.
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Fig. 6. Constructed potential curve derived from experiment
(solid line), and theoretical curve from reference [9] (dots and
dashed line) for the (6)1Σ+

g outer well. The energy origin is
taken at the the 3s+3s asymptote. The region of the potential
minimum is blown up in the inset. The experimental curve is
matched to the theoretical one below 15a0.

5 Theoretical description

The predissociation of the vibrational levels lying in the
(6)1Σ+

g (3s+5s) external well, due to the interaction with
the (5)1Σ+

g (3s + 4p) electronic state has been previously
analyzed in reference [11], in the framework of a simple
Landau-Zener semiclassical picture for the avoided cross-
ing between these two states. A structureless increase of
the predissociation probability with decreasing binding
energy was predicted and has been used as a guide for
the detection efficiency in the present experiment. In this
section, we investigate the predissociation process in more
details, in order to interpret the observed oscillations in
the experimental linewidths. We solve directly the cou-
pled Schrödinger equations through the mapped Fourier
grid Hamiltonian (MGFH) representation [18–22] using
an adaptive coordinate [23,24], and a complex absorbing
potential [25–28].

5.1 The Hamiltonian of the system

As discussed above, and in reference [29], the double-well
structure of the (6)1Σ+

g state results from the interac-
tion between covalent configurations (of 3s+nl type) and
ionic configuration arising mainly from Na++Na−(1S).
The ionic potential curve behaves as 1/R and crosses all
covalent configurations, inducing a series of avoided cross-
ings in the Born-Oppenheimer adiabatic potential curves
(Fig. 7).

A diabatic representation of the electronic states of
Figure 7 has been determined in reference [29]. Figure 8a
displays these results for the 1Σ+

g symmetry, in the vicin-
ity of the avoided crossing studied here. These calcula-
tions rely on a diabatization procedure, which consists in
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Fig. 7. Adiabatic 1Σ+
g potential curves of Na2, as calculated in

reference [9]. The origin of energy is the 3s+3s asymptote. The
dashed curve sketches the ionic Na++Na−(1S) configuration
varying as 1/R, which is traced by a series of avoided crossings.
The avoided crossing studied here is marked by the square. The
avoided crossings beyond 60 a0 are not distinguishable.

an orthonormalized projection of a restricted set of adi-
abatic electronic states (the 10 lowest adiabatic states
in Ref. [29]), over a basis of non-orthogonal wave func-
tions constructed as antisymmetrized products of atomic
wave functions localized on each Na atom, and corre-
sponding to the lowest dissociation limits Na(3s)+Na(nl)
and Na(3p)+Na(3p) (10 covalent configurations in total in
Ref. [29]), and the ionic dissociation limit Na++Na−(1S).
The system is now represented by an effective diabatic
Hamiltonian matrix Hdiab, whose diagonal elements are
interpreted as diabatic energies (dashed curves in Fig. 8a).
The avoided crossing in Figure 7 marked by the open
square clearly results from the interaction between a
covalent curve Vcov correlated to the 3s + 4p limit, with
the ionic curve Vion associated to Na++Na−(1S). The
non-diagonal element V d

cov−ion of Hdiab connecting Vcov

and Vion is drawn in Figure 8b: it is slowly varying around
the crossing, and is not symmetric. Let us note that its
amplitude is much larger than the energy spacing between
the adiabatic curves in Figure 8a. But these two numbers
cannot be directly compared, as the transformation be-
tween the adiabatic and the diabatic basis also involves
the strong overlap within the non-orthogonal diabatic ba-
sis functions. The orthogonal projection coefficients of the
(6)1Σ+

g and (5)1Σ+
g adiabatic states on the covalent and

ionic channels are reproduced in Figures 8c and 8d, which
illustrate how the adiabatic states exchange their ionic
or covalent character at the avoided crossing. Beyond the
crossing at large R, these coefficients reach values close
to 0 or 1, while this trend is not so well visible before
the crossing at small R. However, Figures 8c and 8d still
suggest that the system can be conveniently described
through a model involving only the two effective chan-
nels named by the limiting potentials Vcov and Vion, and
interacting through a coupling term which can be taken
roughly constant or slowly varying around their crossing.
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g

coupled states, and corresponding diabatic potentials (dashed
lines) for the covalent (Vcov) and ionic (Vion) channels, corre-
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rations at large distances. (b) Interaction term between Vcov

and Vion. (c) Projection of the (6)1Σ+
g adiabatic state on the

ionic (full line) and covalent (dashed line) channel. (d) Idem
for the (5)1Σ+

g adiabatic state.

The remaining part of this section is devoted to the defi-
nition of such a two-channel model.

5.2 The MFGH+OP method

In our two-channel problem, the system is described
by two Schrödinger equations, coupled either by a ra-
dial interaction in an adiabatic picture, or by an elec-
tronic operator in a diabatic picture, and is solved using
the MGFH method, described in detail in the references
quoted above. We recall here only its basic features:

– the total Hamiltonian H = T + V for p = 2 coupled
channels, where T and V are respectively the kinetic
energy and potential energy operators, is represented
by its matrix elements in a basis of N plane waves:
exp (i2πkR/L), k = −((N/2)− 1), ..., 0, ..., N/2, where
L is the length of a N point grid in the position coor-
dinate R;

– the resulting Np×Np matrix is diagonalized, yielding
all the eigenvalues and eigenvectors of the system;

– the grid step is adapted to the local de Broglie wave-
length of the problem, which is equivalent to a change
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of variable and to a transformation of wave functions,
according to equations (2.9–2.11) of reference [23].
This procedure called mapping reduces substantially
the number of required grid points, and enables the
calculation of vibrational levels arbitrarily close to the
dissociation limit and thus large R [30].

Calculations using the Fourier grid Hamiltonian repre-
sentation without mapping have already been performed
using the adiabatic representation of potential curves [22].
In contrast, the mapping procedure cannot be applied in
the adiabatic picture, as the radial derivative operators
are represented by a non-symmetric matrix [31]. This dif-
ficulty can be overcome in the diabatic representation. In
the present work, all calculations are performed in the dia-
batic picture, which allows an easy implementation of the
MFGH method.

The widths of the predissociated levels are calculated
with the optical potential (OP) method [25–27], imple-
mented into the MFGH method [28]. An optical poten-
tial Vopt is a pure imaginary potential placed at the outer
border of the grid in the coordinate space, in order to
ensure pure outgoing wave boundary conditions for the
calculated wave functions. The Hamiltonian is now com-
plex, and its diagonalization yields complex eigenvalues,
whose real part corresponds to the position of the reso-
nance, whereas the imaginary part provides half of the
predissociation width. Following reference [32], we use for
Vopt an exponential form:

Vopt = AoptNopt exp
( −2Lopt

R−Ropt

)
, (3)

where Nopt is a normalization factor, Ropt, Lopt and Aopt

are respectively the position, the range, and the ampli-
tude of the optical potential. We choose the parameter
values recommended in reference [32]: Aopt = 0.002 a.u.
(1 a.u. = 219474.63137 cm−1), Lopt = 12a0, Ropt =
L−Lopt, Nopt = 13.22. The convergence of the calculated
widths is checked as described in reference [28].

5.3 The diabatization procedure for the two-channel
problem

According to the arguments developed in paragraph 5.1,
we set up a diabatization procedure restricted to our two-
channel problem, which is different from the one including
many channels developed in reference [29]. In the adiabatic
basis, the radial Schrödinger equation is (in atomic units):

(
− 1

2µ
d2

dR2
+V a

ii

)
ψi− 1

2µ

2∑
j=1

(
2τ (1)

ij

d
dR

+τ (2)
ij

)
ψj = Eiψi.

(4)
We note hereafter V a

ii and ψi the adiabatic potential and
the radial wave function corresponding to channel i, Ei

its energy, and µ the reduced mass of the molecule. The
rotational term l(l + 1)/2µR2 is included in V a

ii . The ra-
dial interactions τ (1)

ij and τ (2)
ij in the adiabatic picture are

given by:

τ
(1)
ij (R) =

〈
ϕa

i (R, r)
∣∣∣∣ ∂∂R

∣∣∣∣ϕa
j (R, r)

〉
(5)

τ
(2)
ij (R) =

〈
ϕa

i (R, r)
∣∣∣∣ ∂

2

∂R2

∣∣∣∣ϕa
j (R, r)

〉
, (6)

where ϕa
i (R, r) is the adiabatic electronic wave function

associated to the channel i, depending on both R and on
the electronic coordinates r. The brackets represent the
integration over electronic coordinates. As a consequence
of a two state model, in which τ (1) is real, we have:

τ
(1)
ij (R) = −τ (1)

j,i (R) = τ (1)(R) (7)

τ
(1)
ii (R) = 0. (8)

The diabatic radial Schrödinger equation used in the
MFGH method is:(

− 1
2µ

d2

dR2
+ V d

ii

)
φi +

∑
j

V d
ijφj = Eiφi, (9)

where φi is the diabatic wavefunction corresponding to
channel i, V d

ii are the diabatic potentials, and V d
ij the elec-

tronic couplings. As previously, the rotational contribu-
tion is included in V d

ii .
The diabatization procedure consists simply in a

change of basis, through the transformation matrix U:

Vd = U−1VaU, (10)

where Va and Vd are the potential operator matrices in
the adiabatic and diabatic picture, respectively. In a two
state model, the matrices Vd, Va and U have the follow-
ing block structure:

Vd =
(
V d

11 V
d
12

V d
21 V

d
22

)
, Va =

(
V a

11 0
0 V a

22

)
,

U =
(
U11 U12

U21 U22

)
. (11)

The matrix U is the solution of the differential equation
written in a matrix form (see Appendix A):

dU
dR

= −τ (1)U, (12)

where τ (1) is the matrix corresponding to the radial inter-
actions τ (1)

i,j (R). Equation (12) is equivalent to:

∂

∂R
U11 = −τ (1)(R)U21

∂

∂R
U21 = τ (1)(R)U11

∂

∂R
U12 = −τ (1)(R)U22

∂

∂R
U22 = τ (1)(R)U12. (13)
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This 2 × 2 coupled equation system is solved using the
Runge-Kutta algorithm [33]. Equation (10) provides then
the diabatic potentials V d

ii and the electronic interac-
tions V d

ij for all R. We performed inward integration over
the length of the coordinate grid starting at the maximum
value. The U matrix is initialized to the unity matrix for
large internuclear distances. Other initial conditions lead
to different diabatic representations. The advantage of the
unity initialization is that it ensures that at large inter-
nuclear distances, interactions vanish and adiabatic and
diabatic basis are equal, which is the best approach to the
situation in Figures 8c and 8d.

We note that in the frame of a two-state model, the
U matrix elements can also be found analytically provided
the primitive of τ (1) is known (see Appendix B).

5.4 Modeling of the adiabatic potentials and radial
interactions

The analytic potential curve derived from the experiment,
and the curve of reference [9] for the (6)1Σ+

g outer well
are close to each other, so we match the former curve to
the adiabatic potential from reference [9] to ensure, that
the calculated energy levels are close to the experimental
ones. To deal with adiabatic potentials consistent with the
definition of equation (4) we subtract the τ (2) interaction
from the experimental (6)1Σ+

g potential, derived from the
U matrix (see Appendix A). However, this term is found to
be small and of no significant influence in our analysis. For
the dissociation channel, we use the calculated adiabatic
(5)1Σ+

g potential of reference [9].
In our approach, the radial interaction τ (1) between

the adiabatic channels plays the role of an adjustable pa-
rameter. We tried two different shapes for its modeling:

– a Lorentzian function:

τ
(1)
LZ(R) =

A

(R −Rc)2 + ω2
, (14)

characterized by the position Rc and the width ω of
the avoided crossing, and the interaction strength A.
If A = 4ω2, this expression corresponds directly to
a Landau-Zener model where the diabatic interaction
is assumed constant and the difference between the
two diabatic potentials is varying linearly. Taking A
and ω2 as independent parameters allows for a better
flexibility of the model, to account for the slow asym-
metric variation of the ionic-covalent coupling around
the crossing suggested by Figure 8b, and for the possi-
ble inaccuracy of the (5)1Σ+

g potential, which is kept
fixed. In the following, we will refer to this case as the
modified Landau-Zener model;

– an exponential function (in atomic units):

τ (1)
exp(R) =

−α (R−Rc)
RRc

λβe(−λR) +
β

R2
e(−λR)

(
α

(R −Rc)
RRc

)2

+ 4(βe(−λR))2
, (15)
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Fig. 9. Experimental (solid squares) and calculated (open
squares) predissociation line widths of the vibrational levels
(for J6 = 9) lying in the (6)1Σ+

g outer well, as a function of
the energy. The parameters used are Rc = 33.4a0, ω = 1.25a0,
and A = 0.55a0.

where β and λ characterize the strength of the expo-
nential diabatic interaction, Rc is the position of the
avoided crossing and α is the slope of the variation
of the difference between the two diabatic potentials.
Such an expression actually reflects the asymmetric be-
haviour of the ionic-covalent interaction over the range
of distance shown in Figure 8b.

For each model, the parameters are adjusted in order
to reproduce the experimental results.

5.5 Comparison between experiment and theory

We solved numerically the diabatic Schrödinger equa-
tion (9) with the MFGH+OP method, choosing the radial
interaction represented in Figure 10a, with parameter val-
ues: Rc = 33.4a0, ω = 1.25a0, A = 0.55a0. The computed
predissociation widths are displayed in Figure 9 for the
modified Landau-Zener model, together with the experi-
mental values. The oscillations of the widths with respect
to the energy is a consequence of an interference effect be-
tween bound and continuum states. It can be understood
as the variation of the relative phase of the two wave func-
tions associated to each channel, in a Franck-Condon type
formula [34]. Similar oscillations have recently been pre-
dicted in Cs2 predissociation [28].

The diabatic curves deduced from our two-channel
diabatization associated to the corresponding electronic
interaction of Figure 10b are shown around the crossing re-
gion in Figure 11. The slight wiggles of the diabatic curves
at the crossing point are not physical, and are not present
in the curves of reference [29]. They reveal the limit of
the present two-state model. Note also that the electronic
interaction yielded by the modified Landau-Zener model,
and the one from reference [29] have a similar variation,
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but the magnitude is roughly a factor 20 different, which
is related to the definition of the electronic wave functions
in reference [29], which are non-orthogonal.

Up to now the comparison between experiment and
calculation was restricted to the linewidth oscillation. To
improve the model description we will use a step by step
iterative procedure for adjusting the shape of the outer
well of the (6)1Σ+

g state by alternating the comparison
between level positions and widths.

A direct automatic fit using as intermediate step the
MFGH+OP calculations and adjusting the potential and
the coupling is feasible, but would require longer numer-
ical calculations which are not necessary for the present
discussion.

The coupling between the (5)1Σ+
g and (6)1Σ+

g states
leads to the observed line widths due to predissociation,
but also to a shift in the energetic positions of the levels.
The determination of a potential for the external well of

the (6)1Σ+
g state directly from the measured energy level

positions as described in Section 4 does not include the
coupling. Therefore, using such a potential for the coupled
channel calculation leads to calculated energies which de-
viate from the observed ones. In the case of the Lorentzian
shaped coupling discussed above the deviations increase
with increasing vibrational quantum number and reach
values up to 0.4 cm−1 for v6 ≈ 100 values, i.e. 80 times
the experimental uncertainty. The corresponding residuals
are shown in Figure 5 as open circles.

In order to include the coupling in the potential deter-
mination we used the following strategy. For a set of cou-
pling parameters which describes the observed line widths
oscillation satisfactorily, we determined the energy shift
introduced by this coupling in the coupled channel calcula-
tion. Then again a single-channel potential fit for the outer
well was done, but using now energy positions which are
shifted compared to the measured ones by just the amount
the coupling introduces. The quality of this potential fit
is not changed compared to the final result obtained in
Section 4, i.e. σ = 2.1.

Starting with this new potential, we performed again
a coupled channel calculation using the same coupling as
before. We found that only a slight adjustment of the cou-
pling parameters is necessary to obtain agreement between
observation and simulation which is as good for the widths
as the earlier one or better for low lying vibrational levels
up to v6 ≈ 65. The variation of (obs-cal) was now simi-
lar to the one obtained with the single potential fit. For
vibrational levels higher than v6 ≈ 80 the values for (obs-
cal) increased again up to −0.2 cm−1 for v6 ≈ 100. The
truncated power expansion in its present form is probably
not flexible enough to account for the potential turnover
to form the potential barrier. This systematic deviation
could be removed by adjusting the change from analytic
to the ab initio potential in this region more carefully with
respect to the eigenenergies. The best obtained result is
shown in Figure 5.

To set up a fitting procedure for a double well potential
would not solve the problem because there are no exper-
imental data available for levels of the inner well which
are located close to the barrier. The coefficients of the ob-
tained potential are listed in Table 1. Oscillations of (obs-
cal) similar to the line widths, as observed for the single
channel case (black squares in Fig. 5) are still visible in
the coupled channel result (open squares).

We performed a further check of our two channel model
according to the following lines: we verified that the elec-
tronic interaction in Figure 8b is well represented by the
exponential form β exp(−λR) with the following param-
eters: β = 0.725a−1

0 , λ = 0.102a−1
0 . Using then the ex-

ponential model of equation (15), we obtained results for
the widths and for the potential, which were indistinguish-
able from the modified Landau-Zener results at the scale
of Figures 9 and 11. The parameter values are α = 1,
β = 0.014a−1

0 , Rc = 32a0, λ = 0.1a−1
0 . The correspond-

ing diabatic potentials are also very close to this previ-
ous model. This is consistent with the slow variation of
the diabatic electronic interaction over the crossing point
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Table 1. Parameters used for the outer well of the (6)1Σ+
g

potential. The range of validity is 17.2a0 to 40.1a0 . The ai pa-
rameters are in cm−1, Rm in a0 units, and b is dimensionless.
In order to faithfully represent the potentials, coefficients are
given to eighteen significant digits. It does not reflect the ac-
curacy of the potentials in reproducing experimental energies.

Rm 29.69872143a0

b 0.28

Tm 30417.04650532

a1 0.147225873174429509 × 102

a2 0.101443258703711126 × 105

a3 0.427251930141305493 × 105

a4 0.213878195489583799 × 106

a5 0.310481409886057163 × 107

a6 0.514625912878118157 × 108

a7 0.109287568874845281 × 109

a8 –0.452319092394113731 × 1010

a9 –0.316148446444594040 × 1011

a10 0.116099607761238815 × 1012

a11 0.177795748946080981 × 1013

a12 0.154533352265548633 × 1013

a13 –0.464244470443060859 × 1014

a14 –0.161574306316988438 × 1015

a15 0.507427546857114000 × 1015

a16 0.393752682633147900 × 1016

a17 0.228002714748274850 × 1016

a18 –0.411969000045946720 × 1017

a19 –0.116942344234640384 × 1018

a20 0.798368231578501760 × 1017

a21 0.992010575143279616 × 1018

a22 0.173307403192511334 × 1019

a23 –0.867084271692733312 × 1018

a24 –0.844881449493068083 × 1019

a25 –0.157821110721069363 × 1020

a26 –0.152630398106187428 × 1020

a27 –0.791415921838104678 × 1019

a28 –0.175141383886510976 × 1019

region (≈ 2a0 wide), which is similar in both determina-
tions. The value used for β is 50 times smaller than the
value deduced from Figure 8. This difference is compa-
rable to the difference between the splitting of the two
adiabatic curves and the electronic interaction both given
in Figure 8. Allowing an adjustable value of β is equiv-
alent to taking into account the strong overlap integrals
involved in the electronic interaction of the extended dia-
batization procedure from reference [29].

6 Conclusion

We have investigated experimentally and theoretically the
outer well of the (6)1Σ+

g state of Na2 dimer. The ob-
served oscillating behavior with respect to the widths of

the predissociated levels is well described in the frame of
a two state model in which the (6)1Σ+

g is perturbed by
the lower (5)1Σ+

g via a non Born-Oppenheimer interac-
tion. The MFGH+OP method was used and appears to
be very powerful for the study of such molecular dynam-
ics. A fit of an analytic potential of the outer well has been
done providing a potential which reproduces experimental
values with a standard deviation of σ = 2.1 for the energy
positions and qualitatively good agreement for the widths
of the predissociated levels. But residual oscillations of the
energetic positons which follow synchronously the oscilla-
tions of the widths still remain. This probably indicates
that the coupling and/or the potential forms with respect
to the internuclear separations are not sufficiently flexible
for the present case.

In total, this opens the way for a promising spectro-
scopic molecular potential determination which takes into
account not only the energy shift due to the perturba-
tion but also the predissociation widths of the perturbed
levels. Beyond spectroscopic interest, the study of the ex-
ternal wells of dimer potentials is of particular interest
in the search of efficient cold molecule formation scheme,
although predissociation effects may substantially reduce
the efficiency of the cold molecule formation process.
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between Germany and France. P.P., O.D., and F.M. thank
the team of Prof. Tiemann for friendly hospitality in Han-
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is gratefully acknowledged.

Appendix A: derivation of the differential
equation (12)

We start with the adiabatic Schrödinger equation (Eq. (4))
that we rewrite in the compact form as:

Haψ = Eψ (16)

with Ha the Hamiltonian operator given in equation (4).
If we apply to this equation the transformation U so

that ψ = Uφ then we have:

U−1HaUφ = Eφ (17)

where the new operator U−1HaU = Hd is the
Hamiltonian operator expressed in the diabatic represen-
tation.

Starting with equation (4) in a two state approxima-
tion (τij → τ), we have for Hd:

Hd = − 1
2µ

(
∂2

∂R2
+ 2

(
U−1U′ + U−1τ (1)U

) ∂

∂R

+ U−1U′′ + 2U−1τ (1)U′

+ U−1τ (2)U − 2µU−1VaU
)

(18)
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with U′ and U′′ respectively the first and second deriva-
tive of U with respect to R.

If we compare this last expression to the equation (9)
we must have:

U−1U′ + U−1τ (1)U = 0 (19)

and
U−1U′′ + 2U−1τ (1)U′ + U−1τ (2)U = 0 (20)

which leads to the desired equations for τ (1) and τ (2),
which should be fulfilled simultaneously:

τ (1) = −U′U−1 (21)

τ (2) = −U(U′′)−1. (22)

From equation (21) U can be determined. Finally we have:

Hd = − 1
2µ

[
∂2

∂R2
− U−1

(
2µVa + τ̄ (2)

)
U

]
(23)

where τ̄ (2) is constructed to fulfill equation (20).

Appendix B: derivation of the analytic formula
for the matrix element of U

We recall here the general formulation of a transforma-
tion between a diabatic and an adiabatic representation
of molecular states, expressed as a rotation with an an-
gle θ(R) in a two-state configuration space. The rotation
matrix is expressed as:

U(R) =
(

cos θ(R) − sin θ(R)
sin θ(R) cos θ(R)

)
. (24)

We note ϕa
I (R) and ϕa

II(R) the adiabatic electronic states
and ϕd

I and ϕd
II the diabatic states. The adiabatic basis

depend on the internuclear distances R whereas the dia-
batic basis is R independent.

We pass from one basis to another with the U matrix
so that:

ϕd
I = cos θϕa

I (R) − sin θϕa
II(R) (25)

ϕd
II = sin θϕa

I (R) + cos θϕa
II(R). (26)

After derivation of the first equation with respect to R and
after projection over

〈
ϕa

II(R)|, we obtain if we assume that
the adiabatic basis is orthonormal:

∂θ

∂R
=

〈
ϕa

II(R)
∣∣∣∣ ∂∂R

∣∣∣∣ϕa
I (R)

〉
= τ (1) (27)

so that
θ =

∫
τ (1)(R)dR. (28)

If
τ (1)(R) = τ

(1)
LZ(R) =

A

(R −Rc)2 + ω2
(29)

Fig. 12. U11 (dotted line), U21 (dashed line) and U12 (dot-
dashed line) matrix elements of U in the case of a Lorentzian
radial (solid line) interaction with the same parameters as in
Figure 9.

the former equation can be integrated analytically, we
obtain:
∫
τ (1)(R)dR =

A

ω

(
arctg

(
R−Rc

ω

)
− arctg

(−Rc

ω

))

(30)
and for the matrix coefficients we have:

U11 = U22

= cos

[
A

ω

(
arctg

(
R−Rc

ω

)
− arctg

(−Rc

ω

) )]

(31)

U21 = −U12

= sin

[
A

ω

(
arctg

(
R −Rc

ω

)
− arctg

(−Rc

ω

) )]
.

(32)

Figure 12 shows the numerical solution of equation (12)
for the same parameters as in Figure 9, it is identical to
the analytical formulas developed in the present appendix.
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Masnou-Seeuws, Ph. Millié, V.N. Ostrovskii, J. Phys. B
27, 1723 (1994)

30. Kai Willner, O. Dulieu, F. Masnou-Seeuws, J. Chem. Phys.
(in press)

31. M. Vatasescu, Ph.D. thesis, Université Paris-Sud, 1999
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